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Statistical Methods for Large Flight Lots and 
Ultra-high Reliability Applications 

R. Ladbury, Member, IEEE, and J. L. Gorelick 

Abstruct- We present statistical techniques for evaluating 
random and systematic errors for use in flight performance 
predictions for large flight lots and ultra-high reliability 
applications. 

I. INTRODUCTION 
Sampling strategies for radiation testing often represent a 

compromise between generality and economy.[ 11 The most 
general strategies (those using binomial statistics) assume little 
about parts’ radiation response distribution (RRD). However 
such strategies require large samples to achieve high 
confidence of high success probability (e.g. 22 parts with no 
failures to have 90% confidence that at least 90% of parts 
would pass). The main reason for these large samples is that 
the schemes must work for pathological thick-tailed or 
multimodal failure RRDs as well as for those that are well 
behaved. (See Fig 1.) Moreover, because binomial sampling 
makes no assumptions about distribution form, even if we 
know with 90% confidence that, for example, 90% of parts 
pass at a dose D, we cannot say how many would pass at any 
other dose level. 

More economical strategies argue based on technical and 
heuristic grounds that the RRD within a wafer lot is consistent 
from part to part,[2] and assume the RRD will approximate a 
particular form (usually Normal or Lognormal). This allows 
establishment of higher success probability and confidence 
with smaller test samples. Moreover, for small flight lots ( 4 0  
parts) and not-too-stringent reliability requirements, slight 
deviations of the actual RRD from the assumed form will not 
seriously alter RHA conclusions. However, if these conditions 
are violated, uncertainties in the RRD tails can dominate risk, 
and small sample do a poor job of constraining RRD tails or 
identifying pathological behavior therein. 
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Fig 1. Although Normal, Lognormal, Weibull and Frechet distributions yield 
good fits to the data shown, they behave very differently in their tails This 
becomes clear in looking at the worst performer in flight lots as small as 20 
parts 

Implications of distribution pathologies have been treated in 
discussions of “maverick” devices[3] and of bimodality in the 
ELDRS response of the National Semiconductor LMl 1 1 
voltage comparator.[4],[5] Reference 3 considers the 
implications of occasional outliers seen in large-lot tests of 
108A op amp. Specifically, about 1% of parts show 
abnormally large changes in offset voltage. The authors 
conclude that such maverick devices would likely not be 
detected by small-sample tests and this could have significant 
hardness assurance implications for some applications. 
Reference 4 considers the hardness assurance implications of 
bimodal radiation response in LMl 1 1 voltage comparators. 
The authors concluded that multimodality within a single 
wafer lot precludes sampling strategies that assume a particular 
distribution for any mode, since the existence of further modes 
at lower probability cannot be ruled out. Such parts require 
binomial (or, in the parlance used in reference 4, “distribution- 
free”) sampling. The authors suggested the bimodality in the 
LM 1 1 1 resulted from subtle differences in post-processing that 
shifted the balance between competing mechanisms. The 
authors of reference 5 found evidence for such a competition 
occurring in the nitride passivation of the LMl l l s  and 
concluded that the balance was shifted by differences in the 
pre-irradiation elevated thermal stress (PETS) to which the 
parts were exposed after wafer fabrication. The elucidation of 
this mechanism meant that bimodality in the LM111 could be 
controlled. This reduced the urgency of developing RHA 
methodologies capable of dealing with pathological RRDs. 
However, the issue of pathological RRDs has not gone away, 
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as we show below, and particularly for commercial parts, 
remediation of such response may not be feasible. RHA 
methods for dealing with such parts are still needed. 

In addition to such pathologies, there is also the issue of 
systematic errors that may be introduced when the actual 
RRD-though well behaved-varies from the form assumed in 
the analysis. As Fig. 1 shows, even well behaved RRDs yield 
systematic errors for large flight lots under such circumstances. 
Similar errors occur for ultra-high-reliability applications, 
since here, too, uncertainties in the behavior of RRD tails can 
dominate risk to the application. Usually, the sample sizes 
used in radiation characterization and RLAT are too small to 
constrain RRD tails. Here we discuss use of representative 
archival data to constrain distribution pathologies and provide 
sufficient statistics that bounding behavior for the part can be 
inferred. We also investigate the influence of assumed 
distribution form by fitting the data to several well behaved 
distribution forms with different symmetries-thereby 
estimating the distribution dependence of the analysis. 

11. DATA SOURCE 

The data used in this study were mined from the BSIS 
radiation database and were compiled in the course of normal 
lot testing at the Raytheon Component Evaluation Center using 
their gammacell 220 CO-60 irradiator. Most parts were 
procured to internal Boeing Specifications similar to Standard 
Military Drawings (SMDs). Tests were conducted per Mil-Std 
883 Method 1019 at dose rates from 50-300 rads(Si)/s. 
Parametric and functional shifts were measured after each dose 
step. Because the test conditions and methodologies were 
consistent across the entire dataset, we were able to combine 
data for parts across many different wafer lots. Individual 
RLAT samples ranged from 4-20 parts. 

111. METHODOLOGY 

For each part, we calculated statistics at each dose step for a 
representative parameter for each lot and for the ensemble of 
all lots combined. We used the ensemble’s greater statistics to 
characterize distribution pathologies-or if no pathologies 
were evident, we used binomial statistics to bound the 
proportion of parts that exhibited such pathologies. After 
Namenson,[6] we varied our analysis method depending on 
whether variability from lot to lot greatly exceeded that 
typically seen within a wafer lot, or whether inter-lot and intra- 
lot variation were roughly commensurate. For the 
commensurate case, we used the ensemble to infer flight-lot 
behavior. When intra-lot distributions were tight, but lot-to-lot 
variability were large, we combined data from the flight-lot 
RLAT sample and the ensemble, using the ensemble to 
determine required RLAT sample sizes and potential flight-lot 
variability and relying on flight-lot RLAT results to estimate 
mean flight-lot performance. 

To gauge dependence of analysis conclusions on the 
assumed distribution form, we fit data to three different forms. 
We chose the Normal, Weibull and Lognormal distributions 

for their different symmetries, their familiarity and the fact that 
they can be motivated on physical (Weibull or Lognormal) or 
mathematical (Normal) grounds: 

We chose the Normal distribution 
f(x, p, o> = (27c0)-”~ exp(-(x - p)2) / o) (1) 

because it is symmetric about its mean, and the sample- 
mean behavior for small samples is known to follow Student’s 
t distribution. While it is unphysical for some problems 
because it is defined from -a, to +a, analysis conclusions will 
not be affected as long as p>o. 

We chose the Weibull distribution 

f (x ,w,s> = (s/ws)xS-I exp(-(x/w)S) (2) 
since for shape parameter, s>3.68 (corresponding to 

o/p<0.3), it is skewed left. For s<3.68, the effects of 
distribution breadth will generally dwarf those of negative 
skew in any case. While no analogue to the Student’s t 
distribution exists for the Weibull, we can numerically 
estimate the distribution’s small sample behavior as a function 
of s. 

We chose the Lognormal distribution 

(3) f(x, p, o> = (27cox 
because it is skewed slightly to the right. It can be physically 

motivated when damage is proportional to damage already 
sustained. As with the Weibull, it is necessary to calculate 
numerically the small sample behavior distribution-parameter 
estimators as a function of o. 

We fit data simultaneously to these three distributions using 
maximum likelihood (ML) techniques, since ML fits yield 
confidence interval as well as best-fit parameter estimates. By 
taking the fit parameters that yield worst-case results and fall 
on the bounds of these intervals, we can bound degradation at 
the given confidence level. 

2 -112 exp(-(ln(x) - p12 / 01 

IV. DISTRIBUTION PATHOLOGIES 

Although serious pathologies in RRDs are relatively rare, 
we found examples of both thick-tailed and bimodal 
distributions. These pathologies pose problems for 
conventional small-sample RHA methodologies because the 
RRD does not approach zero in a predictable way even for 
very large degradation levels. This effectively invalidates 
strategies such as increased margin or derating, since no matter 
how much margin one incorporates, one cannot be confident 
that degradation will not exceed that level. 

A.  OP484 
The Analog Devices OP484 quad op amp exhibits a high 

and a low mode of radiation-induced increased bias current, 
Ibias, with at least some lots spanning both modes (see Fig. 2). 
While such bimodality can pose significant difficulties for 
RHA methodologies, the Standard Military Drawing (5962- 
????) version of this part allows Ibias to degrade up to 3000 
nA after 100 krad(Si)-much higher than the levels seen here. 
A study of the saturation trends in the data and of the 
correlations between prerad and post-rad behavior suggests 
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Fig. 2. 033484 Ibias vs. Lot and histogram after 100 krad(Si). 
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Fig. 3. Histogram of Ibias for RH1014 op amps after 200 krad(Si) along with 
Norma, Lognormal and Weibull fits to the data. 

B. 2N5019 
Gate-to-source leakage current Igss after 0.3 and 1 Mrad(Si) 

in 2N5019 Junction Field Effect Transistors (JFET) varies so 
broadly that a log scale is needed to plot it. Several methods 
show the data may be fit by a thick-tailed (Frechet-type) 
extreme-value or very broad lognormal distribution (see Fig. 
4). Predicting on-orbit performance for such a part is difficult, 
since a finite probability exists even for very high Igss. 
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Fig. 4. Igss for 2N5019 FETs fits either a thick-tailed extreme-value (Frechet- 
type) distnbution or a very broad Lognormal. 
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Fig. 5. Changes in gain of 2N2658 BJTs after 300 krad(Si) span more 32x . 
The inset shows the histogram of gain change, along with Lognormal and 
Frechet fits to the data. 

C. 2N2658 
The radiation-induced gain change in the 2N2658 bipolar 

junction transistor (BJT) is also thck-tailed, following either a 
broad lognormal or Frechet distribution. These trends suggest 
it is unwise to dismiss “outliers” that crop up in =AT. With 
the added statistics of the ensemble, such “outliers” may 
resolve into pathologies rather than remaining isolated 
occurrences. 

The difficulty of predicting degradation makes it important 
to understand how susceptible the application may be to the 
observed degradation. 
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V. WELL BEHAVED DATA 

A. RH1014 Op amp 
To illustrate use of well behaved archival data we use 38 

K A T  samples (158 parts total) of the Linear Technologies 
RH1014 quad op amp tested at 60, 100 and 200 krad(Si). The 
fact that thel58-part dataset yielded no sign of RRD pathology 
establishes at the 90% CL (using binomial statistics) that any 
such pathologies comprise less than 1.5% of the parts. Fig. 6 
shows Ibias after 200 krad(Si), along with Normal, Lognormal 
and Weibull fits to‘ the data. 

ML fits to the 200 krad data yield confidence intervals (the 
shaded ellipses in Fig. 7) as well as best-fit values (black). The 
fit parameters that yield worst-case distributions and are 
consistent with a given CL establish the bounding distribution 
for that CL. 

Using the distributions with WC fit parameters of 
confidence level CL and for desired success probability, Ps, 
we define the design-to Ibias as the value where there is less 
than a 1 -  Ps probability of exceeding that value. As shown in 
Table I, the contributions of both random and systematic errors 
become more significant as CL and Ps increase. Repeating the 
process for the 60 and 100 krad(Si) steps yields Fig. 8 for 
99.9999% success probability at the 95% CL. 

1 P(success)> 1 Fit I Normal I Lognormal I Weibull 1 
TABLE 1: DESIGN-TO-IBIAS AFTER 200 KRAD (SI) 

99% I Best 1 76.8 nA 1 80.6 nA 1 73.7 nA 
99% I 95%WC I 80.4nA I 86.4nA I 77.2nA 

I I I I I 

99.9999% 1 Best I 96.9 nA I 116nA I 84.4 nA 
99.9999% I 95%WC I 103nA I 130.5nA I 90.1 nA 
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Fig. 6. bias after 200 krad(Si) and best fits to the data. 
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Fig. 7. M L  Best fit (magenta) 90% (yellow) and 95% (green) CL intervals for 
the Normal distribution for data in Fig. 6. 
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Fig. 8. Design-to bias for 99.9999% P(successFBes1 Fit (open symbols) 
and 95% CL (solid symbols). 

The linearity between dose and increased Ibias makes it 
possible to correlate the design-to Ibiases with equivalent 
radiation design margins (RDM). The 99.9999195 values are 
roughly 2 . 5 ~  the mean values for each dose step. Factoring in 
the usual 2x margin, this means a 5 x  RDM ought to establish 
the same reliability level. Whle ths  procedure carries risk 
(e.g. due to process changes), the above process provides an 
empirical basis for the RDM, and is preferable to an across- 
the-board, ad hoc requirement. 

Like high reliability requirements, large flight lots 
emphasize the distribution tails. Failure in a flight lot of N 
parts with no redundancy is driven by the worst performing 
part. For failure probability density function (pdf) p’lbias) 
and cumulative distribution P’lbias), the pdf for the worst- 
case Ibias is 

(4) 
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Table I1 gives best-fit and 95% WC design-to values for 
flight lots of 20 and 100 RH1014s. 

Best-Fit CJ 95% CL WC Best-Fit CT 
Type Of Lot Ranqe CJ Ranse Across Lots 

95% CL WC CJ 
Across Lots 

99/95 I 20 I 89.3 I 101.8 I 82.8 
99/BF I 100 1 88.3 I 99.3 nA I 80.2 nA 

Single-Wafer 

Multi-Wafer 

I 99/95 I 100 I 93.3 1 109.5 nA I 85 nA I 

0.15-5.3 1.7-1 1.8 2.1 3.6 

952.7-1 1.8 6-23.3 6.8 9.8 

VI. EFFECTS OF REDUNDANCY 

Effectively implemented redundancy can significantly 
increase reliability not just for random failures, but in some 
cases even for wear-out type failure mechanisms such as TID 
degradation. If instead of requiring all N parts in the flight lot 
to pass some criterion (e.g. Ibiascdesign-to value), only N-M 
parts must pass ( N  for M redundancy), failure will be driven by 
the (N-M+ I )th worst part, and the failure pdf will be given by: 

N - M - I  x p( Ibias) x (1 - P( Ibias)) 
By ensuring that the failure rate is no longer driven by the 

worst parts, added redundancy de-emphasizes the importance 
of distribution extremes. As Fig. 9 shows, when the system 
approaches 2: 1 redundancy, the failure distribution of the 
redundant system is driven by the median behavior of the 
single-part distribution-even if the single-part distribution is 
bimodal or thick-tailed. A small test sample is much more 
likely to provide adequate understanding of a distribution’s 
central behavior than of its tails. If an application requires 
large flight lots or high reliability, but testing large samples is 
not practical, redundancy may be the best way to increase 
confidence in mission success-and for simplifying 
qualification. 

0 100 200 300 400 500 600 700 800 
lbias (nA) 

Fig 9. For a hundred-part flight lot with a Weibull single-part failure 
distnbution ( ~ 5 0 0 ,  s=5.3), increased redundancy causes the system failure 
distribution to approach and then surpass the median behavior of the single- 
part failure distribution (median behavior is achieved at 2: 1 redundancy). 

VII. LARGE LOT-TO-LOT FLUCTUATIONS 

When lot-to-lot variability greatly exceeds intra-lot 
variations, [he ensembit: exaggerates flight-lot vai-iabilivy, tilt 
sampling errors due to small RLAT samples preclude 
meaningful inference. The fKst step in such cases is to 
characterize the variability and use trends in the data (e.g. 
between distribution mean and width) to infer flight-lot 
performance. If no trends emerge, it may be useful to assume 
that the mean and width are independent, estimating width 
with archival data and inferring flight-lot mean with lot- 
specific data. There are several advantages to h s  procedure. 
First it is physically reasonable, since one can view shifts in 
the mean radiation response as arising from lot-specific 
process changes, while intra-lot variations could be due to 
tolerances within the process. Second, while the sample mean 
for small samples converges rapidly to the parent-distribution 
mean, convergence of the variance of the distribution of 
sample variances (s’) has a more complicated dependence on 
sample size n 

where M4 and o2 are the 4th and 2nd central moments of 
parent distribution. As n increases, expression 3 approaches 
convergence as n . For a Normal RRD, sample sizes required 
to determine the sample mean within an error of CT are 4 parts 
for 90% confidence, 5 parts for 95% confidence and 9 parts 
for 99% confidence. Required samples scale as the inverse 
square of the allowable error. For other distributions, the 
sample size can be estimated numerically, but the same rule 
applies: parameters that largely affect where the distribution is 
centered (e.g. normal mean, lognormal mean and Weibull 
width) will generally converge rapidly even for small sample 
sizes, while those that affect mainly the distribution width and 
shape (e.g. normal and lognormal CT or Weibull shape) will 
benefit most from the additional statistics supplied by the 
ensemble distribution. 

Mean shifts in gain AWE for 2N2907 PNP transistors after 
300 krad(Si) vary significantly from lot to lot, but are grouped 
tightly within a lot (especially for lots 1-4, 9 and 11, for which 
all parts are from a single wafer). (See Fig. 10). We fit each lot 
to a Normal distribution using an ML fit. We also fit the data 
allowing the mean to vary from lot to lot, but assuming a 
common value for CT across all lots. (See table 111.) As the 
required confidence level increases, the reduced random 
sampling errors due to the greater statistics of the ensemble 
provide a clear advantage. 

-1  
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Fig. I O .  Gain shifts in 2N2907 PNP transistors are consistent within wafer 
lots, but vary significantly across lots. Parts in lots 1-4 and 9 are from a single 
wafer. 

VIII. CONCLUSION 
Large flight lots and high reliability requirements pose 

problems for RHA methods that rely on small sample sizes. 
Sampling errors arising from the small sample size and 
systematic errors arising from the assumed form of the RRD 
can invalidate RHA analyses. In this note we have shown that 
sampling errors can be bounded by augmenting RLAT results 
with archival data to characterize radiation response variability 
and reduce random errors. Systematic errors from the assumed 
distribution form may be estimated by fitting the data to 
multiple forms-as we have done here for the Normal, 

In looking at the effects of large flight lots, it is important to 
use a distribution that considers flight lot size (equation 1) and 
system redmdancy ifpzesent (ecpatioii 2). 

We have also noted that redundancy not only may increase 
system robustness to random failures, but also to degradation 
and wear-out type failure mechanisms. Redundancy can 
simplify part qualification by driving system performance 
toward the central portion of the radiation response 
distribution-a region much more easily characterized by 
small sample sizes. Early in a part’s history when archival data 
are not available, the only options for use in high reliability or 
large-flight-lot application may be qualification using very 
large samples or conservative design including significant (2: 1 
or more) redundancy. 
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well behaved, but have different symmetries. The results for 
the different distributions gauge the sensitivity of analysis to 
the assumed distribution form. If there is no reason to favor 
one distribution over the others, it is prudent to assume the 
distribution that yields worst-case results. 

Using archival data to bound distribution pathologies and 
d e r  performance is simplest when inter-lot and intra-lot 
variability are comparable in size. Then the greater statistics of 
the ensemble distribution allow inference of flight-lot 
performance with greater confidence than would be possible 
from E A T  data alone. When lot-to-lot variability dominates, 
the first step is to look for trends in the data that are useful for 
prediction. Otherwise, using RLAT data to estimate the mean 
(or other parameter most affecting distribution central 
behavior) and the ensemble to estimate the standard deviation 
(or other parameter most affecting distribution shape and 
width). 
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